#* k] k] k] k] k] k] kg kg kg kg kg kg kg

#

Notices:

#

Copyright (c) 2011 United States Government as represented by the

Administrator of the National Aeronautics and Space Administration.

All Rights Reserved.

#

Disclaimers:

#

No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OF

ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED
#TO, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL CONFORM TO SPECIFICATIONS,
ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL BE
ERROR FREE, OR ANY WARRANTY THAT DOCUMENTATION, IF PROVIDED, WILL CONFORM TO
THE SUBJECT SOFTWARE. THIS AGREEMENT DOES NOT, IN ANY MANNER, CONSTITUTE AN
ENDORSEMENT BY GOVERNMENT AGENCY OR ANY PRIOR RECIPIENT OF ANY RESULTS,

RESULTING DESIGNS, HARDWARE, SOFTWARE PRODUCTS OR ANY OTHER APPLICATIONS

RESULTING FROM USE OF THE SUBJECT SOFTWARE. FURTHER, GOVERNMENT AGENCY

DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THIRD-PARTY SOFTWARE,

IF PRESENT IN THE ORIGINAL SOFTWARE, AND DISTRIBUTES IT "AS IS."

#

Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS AGAINST

THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, AS WELL
AS ANY PRIOR RECIPIENT. IF RECIPIENT'S USE OF THE SUBJECT SOFTWARE RESULTS

IN ANY LIABILITIES, DEMANDS, DAMAGES, EXPENSES OR LOSSES ARISING FROM SUCH

USE, INCLUDING ANY DAMAGES FROM PRODUCTS BASED ON, OR RESULTING FROM,

RECIPIENT'S USE OF THE SUBJECT SOFTWARE, RECIPIENT SHALL INDEMNIFY AND HOLD

HARMLESS THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS,
#AS WELL AS ANY PRIOR RECIPIENT, TO THE EXTENT PERMITTED BY LAW.

RECIPIENT'S SOLE REMEDY FOR ANY SUCH MATTER SHALL BE THE IMMEDIATE,

UNILATERAL TERMINATION OF THIS AGREEMENT.

#* ek ek ek ek ek ek ek ek ek ek ek ek /

This document provides guidelines for installing IKOS on a Linux
system. The installation process described here has been successfully
tested on OpenSUSE 11.4 and Ubuntu 12.

General Rules of Installation:

IKOS requires a number of third-party packages (all of which are open
source) to be installed on your Linux system. The packages requiring
no modification are likely already installed as part of the Linux OS
installation. One should confirm that the version numbers of the
pre-installed packages are appropriate for IKOS as will be stated
below. Other packages will require manual compiling and

installation. Installation of the packages is most easily accomplished
with administrative privileges. Pre-installed packages will likely be
found under /usr with some subirectories including the architectural
bit size, e.g. 32 or 64, in the name. etc. ./lib64. Manually installed

packages will generally, by default, be installed under /usr/local.

Be sure to only use the latest stable release of a package. Avoid

installing betas or from factory development trunks. All linux

distributions have a chosen package management approach. The two major
distributions - Red Hat (Fedora) uses YUM and RPM files and Ubuntu has
its highly integrated Software Center that uses files with the 'deb’
extension (originally the Debian software package format). OpenSUSE
uses the YaST driven by Zypp and uses RPM packages and supports YUM dB
format. When practical, installation through the distribution's

software package manager is recommended but installation from a TGZ
(tar,gzip) package is also acceptable but requires future maintenance

be done manually.

Installing GCC 4.2:

IKOS will not compile properly with a version of GCC older than
4.2. Later versions are known to cause compilation problems

too. Hence, installing GCC 4.2 is highly recommended. Check the
version number of the installed GCC as follows:

> gce --version

Versions of GCC that are confirmed able to compile IKOS utilities: GCC
4.2.x, 4.3.%, 4.4.x and 4.5.x. If your system has a later version

installed, it is recommended that one of these releases be installed

in /usr/local and LIB/PATH point to the directories

appropriately. Note: compiling an additional GCC requires installation
of various libraries. Be sure to include the development/source

packages of the libraries which will include, e.g. essential header

files.

Installation, via command line for different Linux distributions is as
follows:

Fedora:
> sudo yum install gcc-g++

Ubuntu:
> sudo apt-get install gcc-g++

OpenSUSE:
> sudo yast install gcc-g++

Installing BOOST:

IKOS makes extensive use of the BOOST library. Major Linux
distribution maintain an up to date release of BOOST that can be
readily installed using the package manager. To install it, type the
following command in a shell window:

> sudo <yum/apt-get/yast> install boost

Note that the version of BOOST must be 1.47.0 or later.

Note that the correct package on Ubuntu 12 is libboost-all-dev.

Note also that for the current stable version of Ubuntu (12.04) the
command 'sudo apt-get install libboost-all-dev' might install the

version 1.46.0. If you encounter later during the compilation process

some error related to BOOST we recommend to download a newer version
from the BOOST webpage http://www.boost.org/users/download/

Installing SQLite:

IKOS uses SQLite as an infrastructure for performing offline data
management. SQLite is a standard package in practically all Linux
distributions. Insure that version 3 or later is installed in your
Linux system.

Note: Use apt-get install sqlite3 for Ubuntu.

Installing GMP:

IKOS uses the Gnu Multi-Precision Library (GMP) for arbitrary

precision arithmetic. GMP is commonly maintained as a package by the
major Linux distributions. If not available for your Linux

distribution, then go to the GMP web site and download the latest

stable version in a familiar format, e.g. tar.gz. Install gmp and the

GMP C++ bindings using a software manager from one of the major linux
distributions. Both 64 and 32 bit systems are supported by following

two packages.

> sudo <yum/apt-get/yast> install gmp-devel
> sudo <yum/apt-get/yast> install libgmpxx4

Note that you shall install version 5 or later.

Note: Use apt-get install libgmp-dev for Ubuntu (this includes
libgmpxx4).

The IKOS distribution comes as a compressed tarball named
ikos_arbos.xx.yy.tar.gz, where xx.yy is a version number. Unpack the
distribution somewhere in your home directory and set the value of the
environment variable IKOS_INSTALL to the absolute path of the
distribution. For example, if you've unpacked the distribution in the
directory /Users/myself/tools/ikos_arbos.xx.yy, then you shall add the
following command to your profile:

export IKOS_INSTALL=/Users/myself/tools/ikos_arbos.xx.yy
Also add the following environment variable definitions:
export BOOST_INSTALL=/usr/include/boost

Note: if you needed to manually install BOOST from the official distribution
(http://www.boost.org/users/download), just set BOOST_INSTALL to the root of

the BOOST install directory.
export GMP_INSTALL=/usr/lib

If the installation fails because it cannot find GMP you might also
try

'Is /lib/libgmp* /usr/lib/libgmp* /usr/share/lib/libgmp* /usr/local/lib/libgmp* \
/usr/local/share/lib/libgmp* /opt/lib/libgmp* /opt/gmp/libgmp* /opt/local/lib/libgmp* \
/usr/lib/x86_64-linux-gnu/libgmp* /usr/lib/i386-linux-gnu/libgmp* '

If you get a match, you can use that directory name as a value for
GMP_INSTALL. Be aware that you could get two matches, e.g., with
/usr/lib/x86_64-linux-gnu and /usr/lib/i386-linux-gnu if you have installed
both a 64-bits and 32-bits version of GMP in your machine. In that case, please
type the command '‘uname -m' and choose the correct install.

You might also want to update your PATH variable as follows:

export PATH="$IKOS_INSTALL/bin:\
$IKOS_INSTALL/Ilvm-gcc/bin:\
$IKOS_INSTALL/llvm-src/Release/bin:\
$PATH"

To finish the install, please go to the directory containing the
unpacked IKOS distribution and type:

> make all

This will download the LLVM front-end, install it and compile the IKOS
static analyzer.

If for some reason the installation of IKOS fails after installing
LLVM, typing 'make all' again will start over the installation from
the beginning. In order to skip the installation of LLVM, simply type:

> make ikos

Instead of typing 'make all', you can perform the installation in two
steps with the following commands:

> make llvm
> make ikos

Compiling a C program with LLVM:

This requires modifying the Makefile used to build the program so that
the compiler tools invoked are those provided by LLVM. This usually
amounts to chaging the settings for the Makefile variables CC, LD and
AR. This process is illustrated in the directory 'example' located

under the IKOS installation directory. There, you can find a simple
program made of three files 'main.c', 'f1.c' and 'f2.c". The files

'f1.c' and 'f2.c' are compiled separately and placed in a library,
which is then linked with the main C program. Here is what the
original Makefile looks like:

CC =gcc -c
LD =gcc
AR =ar

LIB_FILES = fl.0 f2.0

all: main.o lib.a
$(LD) -0 example main.o lib.a

%.0: %.c

$(CC) -0 $@ $<

lib.a: $(LIB_FILES)
$(AR) s $@ $(LIB_FILES)

clean:
rm -f *.o lib.a example

Modifying this Makefile so that it can be compiled by the LLVM
front-end only requires changing the settings of the compiler
variables as follows:

LLVM_INSTALL=$$IKOS_INSTALL/llvm-src/Release/bin
LLVM_GCC_INSTALL=$$IKOS_INSTALL/llvm-gcc/bin

CC = $(LLVM_GCC_INSTALL)/llvm-gcc -emit-llvm -fno-inline -c -g
LD = $(LLVM_INSTALL)/llvim-1d -link-as-library -disable-inlining -disable-opt
AR = $(LLVM_INSTALL)/llvm-ar

The rest of the Makefile is unchanged. The program can then be built
using LLVM by typing the following command in a shell:

> make -f Makefile.llvm

The binary 'example' now contains LLVM machine code that can be
processed by the IKOS static analyzer. The settings listed above are
generic and can be used in any Makefile that uses CC, LD and AR. If
the Makefile directly invokes the compiler tools, each invocation of
gcc, 1d or ar shall be manually modified.

Running the buffer-overflow static analyzer:

The IKOS static analyzer that checks for buffer overflows is named 'boa’ and is
located in the 'bin' directory of the IKOS distribution. The analysis can be
run in two modes:

- The intraprocedural mode (command-line option '-intra"), which ignores
function call contexts, is fast but imprecise.

- The interprocedural mode (command-line option '-inter") takes into account
function call contexts and is much more precise. It is also more costly
computationally and cannot handle recursive programs.

To run the analysis in intraprocedural mode on the example, just type the

following command in a shell:
> boa -intra example

The results of the analysis are stored in an SQLite database named
‘output.db’. To browse the results, just use the SQLite shell:

> sqlite3 output.db

The results are stored in a table named 'boa_results' with the following
structure:

sqlite> .schema

CREATE TABLE boa_results(safety_check, file, line, status);
CREATE INDEX boa_results_index_1 ON boa_results(safety_check);
CREATE INDEX boa_results_index_2 ON boa_results(file);
CREATE INDEX boa_results_index_3 ON boa_results(line);

The results for the example are:

sqlite> select * from boa_results;
overflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|6|ok
underflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|6|ok
overflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|8|error
underflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|8|ok
overflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|warning
underflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|ok
overflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|warning
underflow|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|ok

The column 'safety_check' describes the type of buffer access checked:
‘overflow' for accessing an element past the end of a memory block and
‘underflow’ for an access with a negative offset. The 'file' and 'line’ give

the location of the operation checked in the original source code. The column
'status' describes the conclusion of the static analyzer on the buffer access
checked:

- 'ok' means that the buffer access is safe for all execution contexts;

- 'error' means that the buffer access always results into an error, regardless
of the execution context;

- 'warning' may mean two things: (1) the operation results into an error for
some execution contexts but not other, or (2) the static analyzer did not have
enough information to conclude, because either the program does not
provide enough information (check dependent on the value of an external input
for example) or the static analysis algorithms are not powerful enough;

- 'unreachable’ (not listed here) means that the code in which the buffer
operation is located is never executed (dead code).

For example, all array accesses inside the loop of function f1 are safe,
whereas the operation upon loop exit tries to access an element past the end of
the array. All array operations in function f2 are flagged as potentially

unsafe, since some call contexts lead to a buffer overflow and some other are
safe. However, the analysis is not precise enough to tell us what execution
contexts lead to an error. These result can be improved upon using the
interprocedural analysis, which can be launched by the following command:

> boa -inter example

The results are stored in the same table 'boa_results', which has been
augmented with a column 'context' giving the context in which a function is
called:

> sqlite3 output.db

SQLite version 3.7.12 2012-04-03 19:43:07

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .schema

CREATE TABLE boa_results(safety_check, context, file, line, status);
CREATE INDEX boa_results_index_1 ON boa_results(safety_check);
CREATE INDEX boa_results_index_2 ON boa_results(file);
CREATE INDEX boa_results_index_3 ON boa_results(line);

A call context is a sequence of call sites of the form f@I, where f is a
function name and 1 is a line number. The results of the analysis for the
example are the following:

sqlite> select * from boa_results;
overflow|.:main@6|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|6|ok
underflow|.:main@6|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|6|ok
overflow|.:main@6|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|8|error
underflow|.:main@6|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f1.c|8|ok
overflow|.:main@?7|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|ok
underflow|.:main@?7|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|ok
overflow|.:main@?7|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|ok
underflow|.:main@?7|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|ok
overflow|.:main@8|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|warning
underflow|.:main@8|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|6|ok
overflow|.:main@8|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|error
underflow|.:main@8|/Users/ajvenet/test-release/ikos_arbos.0.1/example/f2.c|8|ok

The static analyzer has been able distinguish between the two calls to f2 and
give precise answers in each case. The only remaining warning in the second
call to function f2 cannot be further refined as the array operation inside the
loop is safe for the first iterations but ultimately results into an error.

